Immunotherapy involves understanding and harnessing the relationship between the immune system and cancer cells to combat oncogenesis.
There are many different potential immunotherapeutic approaches, including cell-based strategies such as adoptive cell transfer, receptor pathway-based strategies such as checkpoint inhibition, and agent-based approaches such as antibody therapy.
Genetic engineering can be incorporated into all of these approaches. Gene editing can be used to modulate receptor expression levels, induce the production of certain molecules, change cellular phenotypes, or alter the general intensity of the immune response.
The first CRISPR system identified, CRISPR-Cas9, was first discovered in the 1980s as a prokaryotic defense system against foreign genetic material. Since then, CRISPR systems have gained explosive popularity as a genome editing mechanism.
CRISPR systems can be guided to cleave double stranded DNA at specific locations, triggering the host’s natural repair mechanisms. If no template is present, the repair process can create indels – inactivating the gene. Alternatively, scientists can introduce a template sequence which is incorporated at the splice site.
CRISPR-guided genetic manipulation has tremendous potential for immunotherapy research.
It can be used to quickly screen a large panel of genes to identify key genes for immune system function and anti-cancer activity.
It can be used to produce custom engineered cells such as CAR-T cells with greater efficiency than traditional transfection and transduction methods.
It can inactivate genes encoding key proteins enabling immune evasion, offering a potentially more permanent and more efficacious solution than pharmacological inhibitor agents.
And it can attack cancer cells directly by inactivating the genes required for cellular division.
CRISPR-guided anti-cancer research is still in its infancy, but CRISPR-system gene editing offers extraordinary potential for developing more potent, more efficient, and less intrusive methods to fight cancer.
For more information on CRISPR for immunotherapy or additional research areas, please explore our Resource Center at beckman.com/resources.
ご登録いただいた皆様に、どこよりも早く最新情報をお届けします。ぜひご登録ください!
© 2000-2026
ベックマン・コールター株式会社. All rights reserved.
Beckman Coulter、Beckman Coulter ロゴ、製品およびサービスマークは米国およびその他の国におけるBeckman Coulter, Inc. の登録商標です。
その他すべての商標はそれぞれの所有者の財産です。 それぞれの国によりすべての製品が入手できない場合があります。製品入手の可否及び規制内容は各国の規制対応に準じます。各製品は次の規制表示のいずれかに該当いたします。
IVD:In Vitro Diagnostic Products (体外診断用医薬品)該当製品は米国FDA規制に準じます。
日本国内規制での体外診断用医薬品に該当しない場合があります。
日本における体外診断用医薬品に関してはこちらをご確認ください。
ASR:Analyte Specific Reagents
該当製品は”Analyte Specific Reagents. Analytical and performance characteristics are not established.”のラベルが添付されます。
CE: In Vitro Diagnostic該当製品及びヨーロッパ規制(98/79/EC)に順じます。
(製品はヨーロッパ規制98/79/EC以外にCEマークが添付される場合が有ります。)
RUO: Research Use Only(研究使用限定)
該当製品は”Research Use Only(研究使用限定)”のラベルが添付されています。
LUO: Laboratory Use Only(研究使用限定)
該当製品は”Laboratory Use Only(研究使用限定)”のラベルが添付されています。
No Regulatory Status:
医療用機器又は規制商品ではありません。診断又は治療行為には使用できません。