Consistent Cell Maintenance and Plating through Automation
Summary
- Used the Biomek i7 Workstation to maintain adherent and suspension cell cultures at high viability
- Integrated Tilting ALP enabled low-density plates to be used for culture
- Integrated Vi-CELL XR Cell Viability Analyzer assessed cell viability
- “Split Volume” option allowed viable cells/mL value to drive passage volume with no scripting
- Automated concomitant cell plating into 384-well plates
- 1200 μL multichannel head enabled mixing of large volume reservoirs for even cell dispersion
- Efficient multidispense function gave consistent plating across wells
Cell culture is a valuable yet time-consuming aspect of basic biological research and drug discovery. Whether short- or long-term assays, the maintenance of cells is a frequently recurring process and the workload and possibility for contamination increases as the number of cell lines being used by a laboratory increases. In addition, different scientists frequently use different techniques when maintaining cell lines and these alterations can manifest in subsequent assay variability when using these cells.
Here we demonstrate the automation of all aspects of standard cell culture and plating on a Biomek i7 Automated Workstation (Figure 1). A sterile working environment was maintained with HEPA-filtered fans on the Biomek i7 enclosure and the use of sterile Biomek tips prevented contamination throughout the weeks-long culture process. The ability of the Biomek i-Series instruments to directly access integrated devices such as incubators, plate and tip storage, and various analyzers makes these systems ideal for cell culture and cell-based assays.
Figure 1. Biomek i7 with HEPA filters and integrated devices.
CHO cells were cultured under adherent conditions in 6-well plates and a Tilting ALP was used to angle the plate to enable the Span-8 probes to completely remove culture media without disturbing the cells. Cells were then trypsinized by incubating on a heated Peltier device, resuspended and counted on an integrated Vi-CELL XR Cell Viability Analyzer. 1 X 106 viable cells were passaged into the next well every three days utilizing the “Split Volumes” option to automatically account for when transfer volumes were greater than the tip capacity. 24 hours after plating, cell confluence was determined on four regions of each well using a SpectraMax i3X Multi-Mode Detection Platform with SpectraMax MiniMax 300 Imaging Cytometer. Figure 2 shows the distribution of cells after passaging manually or on the Biomek i7 Workstation. The lack of cell clumps in the images shows the automated trypsinization was effective and the low CV value illustrates even distribution of cells across the well.
Figure 2. Consistent automated cell passage. Cell confluence (purple) was measured across 12 images in each of 4 regions of the 6-well plate well 24 hours after manual and automated passaging of 1 X 106 cells. Average confluence and CVs across the 4 regions illustrate even cell distribution and comparable results between automated and manual passages.
Figure 3 plots cell counts and viability of CHO cells over six automated and manual passages, as measured on the Vi-CELL. The Biomek i7 Workstation was able to maintain the cells to comparable levels as the manual passaging results while maintaining cells above 90% viability. The average cell count across passages was slightly lower for automated passage, likely due to the inability to access a small portion of the well when tilted. Most significantly, the variability across passages is lower for the automated system than what was achieved manually (CV = 7.9% vs. 13.8% for cell counts), and this consistent treatment should aid assay consistency.
Figure 3. Automated cell maintenance. CHO cell counts (A) and viability (B) following 6 manual and automated passages, with comparable results between the two approaches. C) Averages and CVs across the six passages. Automated passaging resulted in lower variability in both metrics.
To demonstrate cellular assay plating, 1 X 106 cells were added to 100 mL media in a large reservoir during the culture process. The 1200 μL capacity Multichannel-96 head was used to mix the media to ensure even cell distribution throughout the reservoir. 1000 cells were then multidispensed into all quadrants of two 384-well plates in a single transfer step. 24 hours after plating, cell counts were measured in each well on the SpectraMax MiniMax. Figure 4A shows the heat maps of cell counts for each plate, showing that no bias was seen towards any portion of the plates. This was confirmed by CVs below 10% when comparing average cell counts across columns or rows for each plate (Figure 4B). In addition, the consistent plating from the multidispense step is demonstrated by CVs below 10% when comparing the average cell count for each of the 8 quadrants. This mix and multidispense was executed in under 2 minutes, thereby enabling high-throughput applications when compared to the repeated mixing and roughly 96 transfers it would take to execute this plating manually.
Figure 4. Automated cell plating. A) Heat maps of cell counts in each well of two 384-well plates showing even distribution across the plates. B) CVs of average cell counts across columns and rows for each plate and for the average across the 8 quadrants between the two plates illustrate thorough mixing of cells in the reservoir and consistent multidispensing respectively
Automation of this simple yet frequently burdensome process of passaging and plating cells demonstrates the power and flexibility of the Biomek i7 Workstation. The Span-8 pod enabled processing of low-density plates (i.e. 3 mL culture in 6-well plates) while the large capacity multichannel head enabled rapid plating of 768 assay wells. Integrated cellular analyzers gave the ability to utilize cell count data to drive the cell passaging process and image the passaged and plated cells without intervention, thereby reducing the likelihood of human error.
The suite of SAMI software can manage the processing of multiple plates through the integrated system and track where cells are within a multi-day or multi-week application. In addition, DART software acts as a data repository that stores data throughout a process or between processes and ensures that the data is easily accessible for additional analysis. By utilizing the Biomek i-Series instruments to automate workflows that are used frequently, the bench time saved by scientists accumulates quickly and these efforts can be redirected towards more valuable pursuits such as
experimental design and data interpretation.
Biomek Automated Workstations are not intended or validated for use in the diagnosis of disease or other conditions. Data shared in this document was obtained during development.
Helpful Links
-
資料集
-
アプリケーションノート
- フローサイトメトリーによる簡単な17 マーカー、 18カラーのヒト血液フェノタイピング
- 21 CFR Part 11 Data Integrity for On-line WFI Instruments
- 8011+ Reporting Standards Feature and Synopsis
- Achieving Compliant Batch Release – Sterile Parenteral Quality Control
- 気中浮遊粒子のモニタリング:ISO21501-4校正のインパクト
- 分析における革命:次世代を担うOptima AUCの概要
- Analyzing Mussel/Mollusk Propagation using the Multisizer 4e Coulter Counter
- Automated 3D Cell Culture and Screening by Imaging and Flow Cytometry
- Automated Cell Plating and Growth Assays
- Automated Cell Transfection and Reporter Gene Assay
- Automated Cord Blood Cell Viability and Concentration Measurements Using the Vi‑CELL XR
- Automated Genomic Sample Prep RNAdvance
- Automated Genomic Sample Prep Sample Quality Control
- Automated salt-assisted liquid-liquid extraction
- Automated Sample Preparation for the Monitoring of Pharmaceutical and Illicit Drugs by LC-MS/MS
- Automated Transfection Methods
- Automated XTT Assay for Cell Viability Analysis
- Automating a Linear Density Gradient for Purification of a Protein:Ligand Complex
- Automating Biopharma Quality Control to Reduce Costs and Improve Data Integrity
- Automating Bradford Assays
- Automating Cell-Based Processes
- Automating Cell Line Development
- 新機種Avanti J-15遠心機におけるサンプル保護の改善およびサンプル回収率の最大化
- 新機種Avanti J-15遠心機の短時間減速プロファイルによるワークフロー効率の向上
- Avanti JXNによるタンパク質精製ワークフロー
- Avoid the Pitfalls When Automating Cell Viability Counting for Biopharmaceutical Quality Control
- Beer, Evaluation of Final Product and Filtration Efficiency
- Biomek Automated Genomic Sample Prep Accelerates Research
- Biomek Automated NGS Solutions Accelerate Genomic Research
- Biomek i-Series Automated AmpliSeq for Illumina® Library Prep Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Blood Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Cell
- Biomek i-Series Automated Beckman Coulter Agencourt SPRIselect for DNA Size Selection
- Biomek i-Series Automated Beckman Coulter AMPure XP PCR Purification System
- Biomek i-Series Automated IDT® xGen Hybridization Capture of DNA libraries on Biomek i7 Hybrid Genomics Workstation
- Biomek i-Series Automated Illumina Nextera DNA Flex Library Prep Kit
- Biomek i-Series Automated Illumina® Nextera XT DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq DNA PCR-Free Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Nano DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Stranded mRNA Sample Preparation Kit Protocol
- Biomek i-Series Automated Illumina TruSeq® Stranded Total RNA Sample Preparation Kit Protocol
- Biomek i–Series Automated Illumina® TruSight Tumor 170 32 Sample Method
- Biomek i-Series Automated KAPA HyperPrep and HyperPlus Workflows
- Biomek i-Series Automated New England Biolabs NEBNext® Ultra IITM DNA Library Prep Kit
- Biomek i-Series Automated SurePlex PCR and VeriSeq PGS Library Prep for Illumina®
- Biomek i-Series Automation of the Beckman Coulter GenFind V3 Blood and Serum DNA Isolation Kit
- Biomek i-Series Automation of the Apostle MiniMax™ High Efficiency cfDNA Isolation Kit
- Biomek i-Series Automation of the Beckman Coulter Agencourt DNAdvance Genomic DNA isolation Kit
- 超遠心機および自動分注装置を用いた カーボンナノチューブの調製・精製と 分析用超遠心システムによる解析
- Cell Counting Performance of Vi–Cell BLU Cell Viability Analyzer
- Viability Assessment of Cell Cultures Using the CytoFLEX
- Cell Line Development – Data Handling
- Cell Line Development – Hit Picking
- Cell Line Development – Limiting Dilution
- Cell Line Development – Selection and Enrichment
- Cellular Analysis using the Coulter Principle
- cfDNA Extraction Efficiency Affects NGS Data
- Changes to GMP Force Cleanroom Re-Classifications
- 超遠心分析を用いたバイオ医薬品インスリンのキャラクタリゼーション
- ハンドヘルド型気中パーティクルカウンターで行う クリーンキャビネットの定期的な評価
- Cleanroom Routine Environmental Monitoring – FDA Guidance on 21 CFR Part 11 Data Integrity
- Comparing Data Quality & Optical Resolution of the Next Generation Optima AUC to the Proven ProteomeLab on a Model Protein System
- Conducting the ISO 14644-3 Cleanroom Recovery Test with the MET ONE 3400
- Considerations of Cell Counting Analysis when using Different Types of Cells
- Consistent Cell Maintenance and Plating through Automation
- Control Standards and Method Recommendations for the LS 13 320 XR
- Counting Efficiency: MET ONE Air Particle Counters and Compliance to ISO-21501
- Critical Particle Size Distribution for Cement using Laser Diffraction
- Use Machine Learning Algorithms to Explore the Potential of Your High Dimensional Flow Cytometry Data Example of a 20–color Panel on CytoFLEX LX
- CytoFLEX
- Detecting and counting bacteria with the CytoFLEX research flow cytometer: II-Characterization of a variety of gram-positive bacteria
- Detecting Moisture in Hydraulic Fluid, Oil and Fuels
- Determination of Size and Concentration of Particles in Oils
- 沈殿および遠心分離を組み合わせたキットを使用しない効率的な核酸分離法
- dsDNA Quantification with the Echo 525 Liquid Handler for Miniaturized Reaction Volumes, Reduced Sample Input, and Cost Savings
- Compensation Setup For High Content DURAClone Reagents
- Echo System-Enhanced SMART-Seq v2 for RNA Sequencing
- Effective Miniaturization of Illumina Nextera XT Library Prep for Multiplexed Whole Genome Sequencing and Microbiome Applications
- Efficient Factorial Optimization of Transfection Conditions
- ワクチン開発・製造を推し進める
- Enumeration And Size Distribution Of Yeast Cells In The Brewing Industry
- European Pharmacopoeia EP 2.2.44 and Total Organic Carbon
- Evaluation of Instrument to Instrument Performance of the Vi-CELL BLU Cell Viability Analyzer
- ベックマン・コールターの遠心機を使用したエクソソーム除去FBSの作製:コスト効果に優れた堅実な選択肢
- Flexible ELISA automation with the Biomek i5 Workstation
- Fully-Automated Cellular Analysis by Flow Cytometry
- Get Control in GMP Environments
- g-Max:ベックマン・コールターの多機能な超遠心用製品群への性能追加
- 遠心機によるナノセルロースの分級
- 超遠心法によりナノ粒子を分級して 正確な粒子径を求める方法
- 超遠心分離法 / 動的光散乱法による 顔料インクの分級と粒子径測定
- HIAC Industrial – Our overview solution for fluid power testing for all applications
- HIAC PODS+ Online Mode & Filter Cart Mode
- HIAC PODS+ versus Parker ACM-20 Performance comparison
- A complete workflow for high-throughput isolation of DNA and RNA from FFPE samples using Formapure XL Total on the KingFisher™ Sample Purification System: an application for robust and scalable cancer research and biomarker discovery
- High-Throughput qPCR and RT-qPCR Workflows
- A Highly Consistent BCA Assay on Biomek i-Series
- A Highly Consistent Bradford Assay on Biomek i-Series
- A Highly Consistent Lowry Method on Biomek i-Series
- Highly Reproducible Automated Proteomics Sample Preparation on Biomek i-Series
- Cell Line Development – Hit Picking
- How to Use Violet Laser Side Scatter Detect Nanoparticle
- フローサイトメーターCytoFLEXを用いた、バイオレットレーザーの側方散乱光を利用してナノ粒子を検出する方法
- HIAC(ハイアック)システムでHRLDセンサーを使用する際の推奨ターボリューム設定
- Automating the Cell Line Development Workflow
- 油中パーティクルカウンターのサンプル調製 繰返し精度を維持するための最善の方法
- ICH Q2 – the Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- ICH Q2 – The Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- Illumina Nextera Flex for Enrichment on the Biomek i7 Hybrid Genomics Workstation
- Illumina TruSight Oncology 500 Automated on the Biomek NXᴾ Span-8 Genomics Workstation
- Importance of TOC measurement in WFI in light of European Pharmacopoeia change
- Temperature dependence of hydrodynamic radius of an intrinsically disordered protein measured in the Optima AUC analytical ultracentrifuge.
- Isolation of cell-free DNA (cfDNA) from plasma using Apostle MiniMax™ High Efficiency cfDNA Isolation kit— comparison of fully automated, semi-automated and manual workflow processing
- Issues with Testing Jet Fuels for Contamination
- Leveraging the Vi-CELL MetaFLEX for Monitoring Cell Metabolic Activity
- Linearity of BSA Using Absorbance & Interference Optics
- 光学式パーティクルカウンターにおける「Long Life Lasers(長寿命レーザー)」の検証
- LS 13 320 XR: Sample Preparation - How to measure success
- Particle Size Analysis Simple, Effective and Precise
- Beckman’s LS 13 320 XR Vs. Malvern Mastersizer
- 20カラー イムノタイピングデータのマシンラーニング アルゴリズムを用いた細胞サブセットの詳細解析
- Flow Cytometric Analysis of auto-fluorescent cells found in the marine demosponge Clathria prolifera
- Matching Cell Counts between Vi–CELL XR and Vi–CELL BLU
- MET ONE 3400
- MET ONE センサーの過酸化水素ガス(VHP)耐性
- 超遠心分離法による 金属コロイド精製と濃縮
- 密度勾配遠心法による 金ナノロッドの分離精製
- Method for Determining Cell Type Parameter Adjustment to Match Legacy Vi CELL XR
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Miniaturization and Rapid Processing of TXTL Reactions Using Acoustic Liquid Handling
- Miniaturized Enzymatic Assays with Glycerol
- Miniaturized and High-Throughput Metabolic Stability Assay Enabled by the Echo Liquid Handler
- Miniaturized Multi-Piece DNA Assembly Using the Echo 525 Liquid Handler
- Miniaturized Sequencing Workflows for Microbiome and Metagenomic Studies
- Minimal Sample to Sample Carry Over with the HIAC 8011+
- ミネラルウォーター製造工程のばらつき最小化
- Modern Trends in Non‐Viable Particle Monitoring during Aseptic Processing
- Modular DNA Assembly of PIK3CA Using Acoustic Liquid Transfer in Nanoliter Volumes
- Multi-Wavelength Analytical Ultracentrifugation of Human Serum Albumin complexed with Porphyrin
- Nanoliter Scale DNA Assembly Utilizing the NEBuilder HiFi Cloning Kit with the Echo 525 Liquid Handler
- ナノ粒子複合材の粒子径測定 - 密度勾配超遠心法と動的光散乱法を用いて -
- Identification of Circulating Myeloid Cell Populations in NLRP3 Null Mice
- What to do now that ACFTD is discontinued
- Optimizing the HIAC 8011+ Particle Counter for Analyzing Viscous Fluids
- Optimizing the Multisizer 4e Coutler Counter for use with Small Apertures
- Optimizing Workflow Efficiency of Cleanroom Routine Environmental Monitoring
- Particle Counting in Mining Applications
- パーティクルカウンター資料集 高圧ガス配管内の清浄度測定- MET ONE 3400ガス校正オプションで ISO 14644の計測を簡単に -
- PCR Reaction Setup and AMPure XP Application
- PCR Reaction Setup Application
- 無菌医薬品製造区域の環境モニタリング
- 無菌医薬品製造のためのペーパーレスによる環境モニタリング
- Analysis of plant genome sizes using flow cytometry: a case study demonstrating dynamic range and measurement linearity
- Principles of Continuous Flow Centrifugation
- Flow Cytometric Approach to Probiotic Cell Counting and Analysis
- Protein purification workflow
- Background Subtraction
- Calibrating the QbD1200 TOC Analyzer
- Detection Limit
- Inorganic Carbon Removal
- JP SDBS Validation
- Method Overview
- Overload Recovery
- QbD1200 Preparing Reagent Solution
- USP System Suitability
- Quality Control Electronic Records for 21 CFR part 11 Compliance
- Using the Coulter Principle to Quantify Particles in an Electrolytic Solution for Copper Acid Plating
- A Rapid Flow Cytometry Data Analysis Workflow Using Machine Learning- Assisted Analysis to Facilitate Identifying Treatment- Induced Changes
- Root Cause Investigations for Pharmaceutical Water Systems
- Scalable Plasmid Purification using CosMCPrep
- Full Automation of the SISCAPA® Workflow using a Biomek NXP Laboratory Automation Workstation
- Specification Comparison of Vi–CELL XR and Vi–CELL BLU
- Specifying Non-Viable Particle Monitoring for Aseptic Processing
- ベックマン・コールターの装置を使用してエクソソームの分離および特性評価を行うための標準化・自動化されたアプローチ
- Streamlined Synthetic Biology with Acoustic Liquid Handling
- Switching from Oil Testing to Water and back using the HIAC 8011+ and HIAC PODS+
- Advanced analysis of human T cell subsets on the CytoFLEX flow cytometer using a 13 color tube-based DURAClone dry reagent
- k-ファクタを利用したロータの効率比較
- Validation of On-line Total Organic Carbon Analysers for Release Testing Using ICH Q2
- Vaporized Hydrogen Peroxide Decontamination of Vi–CELL BLU Instrument
- Vesicle Flow Cytometry with the CytoFLEX
- Vi CELL BLU FAST Mode Option
- Vi-CELL BLU Regulatory Compliance - 21 CFR Part 11
- A workflow for medium-throughput isolation of cfDNA from plasma samples using Apostle MiniMax™ on the KingFisher™ Technology
- Automated Research Flow Cytometry Workflow Using DURA Innovations Dry Reagent Technology with the *Biomek i7 Automated Workstation and *CytoFLEX LX Flow Cytometer
- Biomek i7 Hybrid Automated KAPA mRNA HyperPrep Workflow
- Fully Automated Peptide Desalting for Liquid Chromatography–Tandem Mass Spectrometry Analysis Using Beckman Coulter Biomek i7 Hybrid Workstation
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Miniaturization of an Epigenetic AlphaLISA Assay with the Echo Liquid Handler and the BMG LABTECH PHERAstar FS
- Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 555 Liquid Handler
- Utilization of the MicroClime Environmental Lid to Reduce Edge Effects in a Cell-based Proliferation Assay
- 製品カタログ / データシート
-
導入事例 (インタビュー記事)
- 高速冷却遠心機を用いたアデノウイルスベクターの効率的で再現性の良い調製方法
- セルソーターを用いたバイオ燃料高産生藻のハイスループット遺伝子改変オートメーションシステム
- 「細胞のごみ」を分解するオートファジーの 全容に迫る
- B細胞の生成と成熟、維持の研究を創薬にも活かす
- 生殖生物学の基礎研究と現在の生殖補助医療
- 動脈硬化の免疫的な機序から心血管疾患の治療と予後を研究 ― マルチカラーフローサイトメーターで研究を加速 ―
- 10カラーフローサイトメトリーを用いた細胞マーカー解析の有用性
- 研究に最適な卓上遠心機を選択するポイント
- 新しいアプローチでの膠原病疾患治療に向けて
- 機能性抗体で免疫応答を制御し、新しい治療戦略と創薬に結びつける ― 研究を加速するフローサイトメーター ―
- 炎症の観点から疾患の発症メカニズムを解明し、治療薬を創出する
- がん遺伝子パネル解析/クリニカルシーケンスにおけるFFPE組織切片からのゲノムDNA抽出の重要性
- 大学における留学生を対象とした英語による遠心機の安全教育セミナーの有用性
- 大学における共通機器室の機器管理とサポート体制について
- 超遠心法を用いたエクソソームの分離精製
- 免疫研究で漁業の未来を変える - 研究の効率を上げるフローサイトメーター -
- 高精度の迅速診断に向けて - Navios EXによる造血器腫瘍細胞の10カラー解析の導入 -
- iPS 細胞のメカニズムと 安全で効率のよい 樹立・維持法を追究
- X線結晶構造解析のための膜タンパク質精製の基礎
- 密度勾配超遠心法による簡便な細胞小器官の分画
- 粒子間の相互作用研究から、細胞と粒子の相互作用研究へ
- 遺伝子治療ベクターの品質評価における最新事情
- 虹彩細胞からの網膜細胞再生へ ~MoFlo Astriosの役割~
- 堆積地質学の研究における粒度分布測定
- iPS 細胞由来の “ 肝臓の芽 ” の移植で重度肝疾患の治療を目指す
- 患者の自己骨髄細胞を用いて肝硬変を治療する
- 大学の共通機器室での機器管理とサポート体制について
- Fundamentals of Ultracentrifugal Virus Purification
- 総合カタログ
- eBook
- フライヤー
- インタビュー記事
-
Posters
- AMP 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Applications of Ultracentrifugation in Purification and Characterization of Biomolecules
- Automating Genomic DNA Extraction from Whole Blood and Serum with GenFind V3 on the Biomek i7 Hybrid Genomic Workstation
- ABRF 2019: Automated Genomic DNA Extraction from Large Volume Whole Blood
- Automated library preparation for the MCI Advantage Cancer Panel at Miami Cancer Institute utilizing the Beckman Coulter Biomek i5 Span-8 NGS Workstation
- Automating Cell Line Development for Biologics
- Cellular Challenges: Taking an Aim at Cancer
- Cell-Line Engineering
- Characterizing the Light-Scatter Sensitivity of the CytoFLEX Flow Cytometer
- ASHG 2019: Comparison between Mutation Profiles of Paired Whole Blood and cfDNA Samples
- ASHG 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- AACR 2019: Isolation and Separation of DNA and RNA from a Single Tissue or Cell Culture Sample
- Mastering Cell Counting
- AACR 2019: Correlation between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Preparing a CytoFLEX for Nanoscale Flow Cytometry
- A Prototype CytoFLEX for High-Sensitivity, Multiparametric Nanoparticle Analysis
- AGBT 2019: A Scalable and Automatable Method for the Extraction of cfDNA
- ABRF 2019: Simultaneous DNA and RNA Extraction from Formalin-Fixed Paraffin Embedded (FFPE) Tissue
- A Complete Automation and Reagent Workflow for Analysis of cfDNA: from Plasma to Variants
- 製品の取扱説明書
- プロトコル
-
ホワイトペーパー
- Centrifugation is a complete workflow solution for protein purification and protein aggregation quantification
- AUC Insights - Analysis of Protein-Protein-Interactions by Analytical Ultracentrifugation
- GMPクリーンルームの清浄度クラスと日常環境モニタリング
- AUC Insights - Assessing the quality of adeno-associated virus gene therapy vectors by sedimentation velocity analysis
- AUC Insights - Sample concentration in the Analytical Ultracentrifuge AUC and the relevance of AUC data for the mass of complexes, aggregation content and association constants
- AccuPlex™SARS-CoV-2標準物質キットを用いたRNAdvance Viral XP RNA抽出キットの特徴付け
- CytoFLEX Platform Flow Cytometers with IR Laser Configurations: Considerations for Red Emitting Dyes
- Hydraulic Particle Counter Sample Preparation
- ベックマン・コールター社製ウイルスRNA抽出溶解緩衝液を用いたCOVID-19疾患ウイルスSARS-CoV-2の不活化
- Liquid Biopsy Cancer Biomarkers – Current Status, Future Directions
- MET ONE 3400+ IT Implementation Guide
- SuperNova v428: New Bright Polymer Dye for Flow Cytometry
- ライフサイエンス分野製品 安全性データシート(SDS/MSDS)
-
アプリケーションノート